Solar, Hydro, Wind
Power, Inc.

Advance LED Lights Weekly Special


Contact Advance LED Lights

LED Lighting Overview

Light Emitting Diode (LED) technology is rapidly becoming the wave of the future for both residential and business lighting. LED Lights are easily the most energy efficient lighting source and with a lifespan of 50-60,000 hours the initial cost of an LED bulb will take only 1-2 years to recover. In the U.S. today, lighting uses 50% as much energy as all the automobiles on the road. Think of the impact that LED Lights could have on Global Warming.

Types of LED Lights:

LED Light Bulb Shapes:

LED Bulb Shapes

LED Light Bulb Base Sizes:

LED Bulb Base Size

LED Light Color Temperature:

LED Lamp Color Temperature

Different LED Light Whites:

LED Light Whites


About 12 billion electric lights on the planet use Edison bulbs; a third are in the U.S. So, lighting up the world consumes about 2 trillion kilowatt-hours annually, or one-eighth of all electric power. This takes a lot of fuel: the equivalent of nearly a billion tons of coal annually. In the U.S., half of that is in fact coal. Or, in oil-equivalent terms, U.S. lighting uses the equivalent of 50% of the energy used by all cars on American roads.

The reason we've arrived at this state? People crave illumination, have for centuries, and the real economic cost of illumination has utterly collapsed. It is 1,000 times cheaper to light up a room today than at the dawn of the 20th century, and 10,000 times cheaper than in 1850. Consequently, appetites have soared for the central product of illumination technology, lumens. Humans consume 40,000 trillion lumen-hours per year. Focus on the lumen, not the bulb, to understand the future.

Until now, there have been only three illumination technologies: fire, from, first, torches, tallow and wax candles and, later, whale and kerosene oil lamps; electric incandescence, famously perfected in 1879; and electric-induced fluorescence, introduced in 1938 by General Electric. In 1962, Nick Holonyak, a GE engineer, invented the LED, marking the next pivot in illumination's millennia-long march toward ever more ubiquitous, cheaper lumens. Holonyak may eventually become more famous than Edison.

LEDs are fabricated from various concoctions of "compound" semiconductors, mainly gallium and indium. All older forms of illumination use brute force to heat something till it glows. The central difference with an LED is that photons are emitted by designing exquisitely precise semiconductor junctions, tuned just so to employ elegantly efficient quantum phenomena that emit photons. To crudely analogize: It's the quantum equivalent of using a butane lighter instead of rubbing sticks to start a fire.

All lumens are no more equal than all calories are. The eye, like the palate, is exquisitely sensitive to quality. One thousand calories at McDonald's doesn't taste the same as 1,000-calorie foie gras. One thousand lumens from a CFL is visually harsh and makes food (and people) look ugly, compared with the same 1,000 from Edison's incandescence.

Optical scientists cleverly named the visible mix rendered by the colors in light the Color Rendering Index. The CRI gold standard is numerically 100, the color of pleasing Edison incandescence. A CRI below 90 is noticeably nasty to the eye. CFLs produce and are essentially stuck, for physical chemistry reasons, in the CRI 70 range.

But LED lights have been inching up the CRI curve. LED Lighting Fixtures, for example, just started selling a 12-watt product with a pleasing 92 CRI that looks like a standard 60-watt indoor floodlight and uses 50% less energy than a CFL. Others will follow. (Cree recently announced its acquisition of LLF; full disclosure, we were investors in LLF.)

Add awesomely long lifespans to the benefits ledger for LEDs. An Edison bulb burns 1,000 hours before the hammered metal filament flakes out. CFLs achieve 10,000 hours. LEDs last 50,000, and soon 100,000, hours. This feature alone is enough to give LEDs an enormous advantage in lower maintenance costs for many applications, especially in outdoor and industrial environments.

The small size of the LED light chip allows another advantage arising from the physics of optics: Engineers can employ collaterally small lenses making it possible to efficiently extract, direct and focus the lumens, achieving useful illumination with far fewer lumens--and far less energy--wasted.

There are even more benefits from the semiconductor character of LEDs. Lumens can be controlled and modulated for both color and spatial distribution to create smart lights that adjust to the environment or need. Headlights or room lights could be spectrally tuned to match the innate differences in day, night and peripheral vision, providing more comfort and safety.

LEDs can also communicate by electronically modulating the lumens. Brake lights could talk with a trailing car's cruise control; head lights talk with road signs to activate in-car audio/video warnings. Opportunities will be limited not by imagination but by how quickly costs collapse.

Lighting cognoscenti will note no mention thus far of an LED advantage over a CFL liability. CFLs contain tiny amounts of mercury. Individually not much, but billions add up, and no one really believes recycling will keep all that mercury out of landfills. Also, don't count out more efficient incandescent bulbs emerging. While they may never be able to beat LEDs, these new alternatives could match CFLs and will enjoy, for much lower low capital cost, a huge advantage when lumens are needed only occasionally.

Now accepting MasterCharge and Visa.
There is a 15% restocking charge on all cancelled orders.

Please browse through our products.
If you are interested in placing an order or want more information,
please call 1-888-228-9694 toll free or (707) 485-0588 or E-mail us

We are located at 6331 N. State St, Calpella, Ca.
Open 9-5 Monday-Saturday, 10-4 Sunday